Lecture 4 Database Systems

Instructor: M.Imran Khalil Imrankhalil3@gmail.com Resource:Imrankhalil3.wordpress.com

©University of Sargodha Canal Campus Lahore

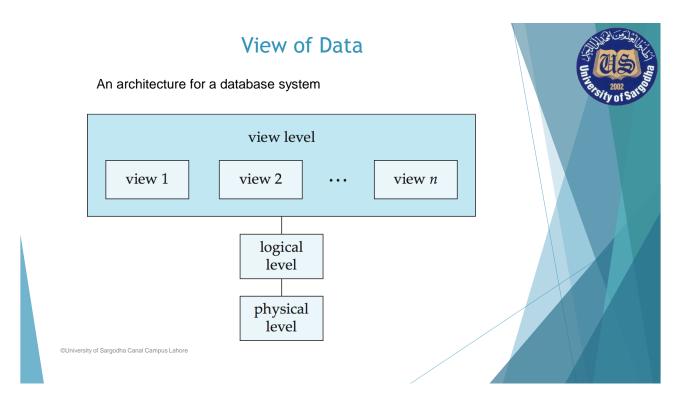
A little review

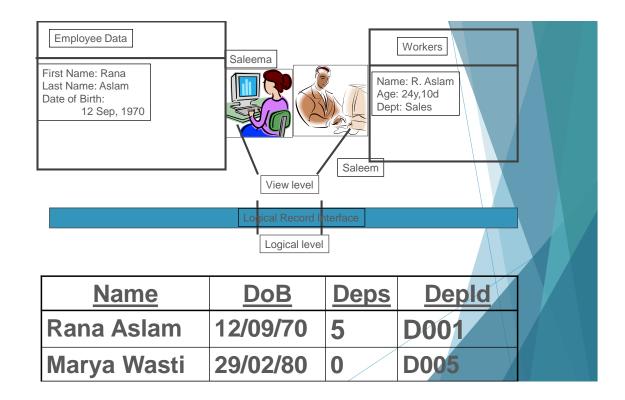
- ► Types of DBMS
 - ► General purpose, Multimedia, GIS and warehouse-DBMS
- Architectures of DBMS
 - Centralized
 - Client Server
 - Personal computer
 - Distributed
 - ► Homogeneous
 - ► Non-Homegenous

Todays lecture

- Views of data
- Database Models
- SQL
- Intro to Entity relation ship diagram
- History of Database

©University of Sargodha Canal Campus Lahore


Levels of Abstraction


- > Physical level: describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.
 - > A complete description of the information content of the database
 - ▶ The entire information structure of the database, as seen by the DBA

type instructor = record

ID : string; name : string; dept_name : string; salary : integer; end;

View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

Instances and Schemas

- Similar to types and variables in programming languages
- Schema the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them
 - Analogous to type information of a variable in a program
 - > Physical schema: database design at the physical level
 - Logical schema: database design at the logical level
- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - > Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

©University of Sargodha Canal Campus Lahore

Data Models

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Relational model
 - ▶ The relational model uses a collection of tables to represent both data and the relationships among those data. Each table has multiple columns, and each column has a unique name. Tables are also known as relations
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

Relational Model

- Relational model (Chapter 2)
- Example of tabular data in the relational model

-			×	_
ID	name	dept_name	salary	
22222	Einstein	Physics	95000	Rows
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Elec. Eng.	80000	
76766	Crick	Biology	72000	
10101	Srinivasan	Comp. Sci.	65000	
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	/
33456	Gold	Physics	87000	/
76543	Singh	Finance	80000	 *

(a) The *instructor* table

©University of Sargodha Canal Campus Lahore

A Sample Relational Database

ID	name	dept_name	salary	
22222	Einstein	Physics	95000	
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Elec. Eng.	80000	
76766	Crick	Biology	72000	
10101	Srinivasan	Comp. Sci.	65000	
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	
33456	Gold	Physics	87000	
76543	Singh	Finance	80000	

(a) The instructor table

dept_name	building	budget	
Comp. Sci.	Taylor	100000	
Biology	Watson	90000	
Elec. Eng.	Taylor	85000	
Music	Packard	80000	
Finance	Painter	120000	
History	Painter	50000	
Physics	Watson	70000	

©University of Sargodha Canal Campus Lahore

(b) The department table

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
 - A query is a statement requesting the retrieval of information
- Two classes of languages
 - Procedural user specifies what data is required and how to get those data
 - Declarative (nonprocedural) user specifies what data is required without specifying how to get those data

SQL is the most widely used query language

Data Definition Language (DDL)

Specification notation for defining the database schema

Example: create table instructor (

ID char(5), name varchar(20), dept_name varchar(20), salary numeric(8,2))

- DDL compiler generates a set of table templates stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Integrity constraints
 - Primary key (ID uniquely identifies instructors)
 - Referential integrity (references constraint in SQL)
 - e.g. dept_name value in any instructor tuple must appear in department relation

Authorization

SQL

- SQL: widely used non-procedural language
 - Example: Find the name of the instructor with ID 22222 select name from instructor where instructor.ID = '22222'
 - > Example: Find the ID and building of instructors in the Physics dept.

- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database

©University of Sargodha Canal Campus Lahore

Database Design

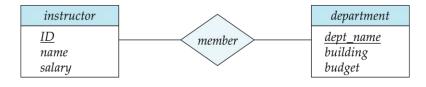
The process of designing the general structure of the database:

- Logical Design Deciding on the database schema. Database design requires that we find a "good" collection of relation schemas.
 - > Business decision What attributes should we record in the database?
 - Computer Science decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Physical Design Deciding on the physical layout of the database

Database Design?

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Is there any problem with this design?


©University of Sargodha Canal Campus Lahore

Design Approaches

- Normalization Theory (Chapter 8)
 - Formalize what designs are bad, and test for them
- Entity Relationship Model (Chapter 7)
 - Models an enterprise as a collection of *entities* and *relationships*
 - Entity: a "thing" or "object" in the enterprise that is distinguishable from other objects
 - Described by a set of attributes
 - Relationship: an association among several entities
 - > Represented diagrammatically by an *entity-relationship diagram*:

The Entity-Relationship Model

- Models an enterprise as a collection of entities and relationships
 - Entity: a "thing" or "object" in the enterprise that is distinguishable from other objects
 - Described by a set of attributes
 - Relationship: an association among several entities
- Represented diagrammatically by an *entity-relationship diagram*:

What happened to dept_name of instructor and student?

©University of Sargodha Canal Campus Lahore

Storage Management

- Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.
- > The storage manager is responsible to the following tasks:
 - Interaction with the file manager
 - Efficient storing, retrieving and updating of data
- Issues:
 - Storage access
 - File organization
 - Indexing and hashing

Query Processing

1. Parsing and translation 2. Optimization 3. Evaluation parser and relational-algebra query translator expression optimizer query evaluation engine execution plan output data statistics ©University of Sargodha Canal Campus Lahore about data

Transaction Management

- What if the system fails?
- > What if more than one user is concurrently updating the same data?
- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

History of Database Systems


- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - ► Tapes provided only sequential access
 - Punched cards for input
- Late 1960s and 1970s:
 - Hard disks allowed direct access to data
 - > Network and hierarchical data models in widespread use
 - > Ted Codd defines the relational data model
 - ▶ Would win the ACM Turing Award for this work
 - ▶ IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
 - High-performance (for the era) transaction processing

©University of Sargodha Canal Campus Lahore

History (cont.)

- ▶ 1980s:
 - > Research relational prototypes evolve into commercial systems
 - SQL becomes industrial standard
 - > Parallel and distributed database systems
 - Object-oriented database systems
- ▶ 1990s:
 - Large decision support and data-mining applications
 - Large multi-terabyte data warehouses
 - Emergence of Web commerce
- Early 2000s:
 - XML and XQuery standards
 - Automated database administration
- Later 2000s:
 - Giant data storage systems

► Google BigTable, Yahoo PNuts, Amazon, .. ©University of Sargodha Canal Campus Lahore

End of Lecture

©University of Sargodha Canal Campus Lahore

Figure 1.02

ID	ID name		salary	
22222	Einstein	Physics	95000	
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Elec. Eng.	80000	
76766	Crick	Biology	72000	
10101	Srinivasan	Comp. Sci.	65000	
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	
33456	Gold	Physics	87000	
76543	Singh	Finance	80000	

(a) The instructor table

dept_name	building	budget	
Comp. Sci.	Taylor	100000	
Biology	Watson	90000	
Elec. Eng.	Taylor	85000	
Music	Packard	80000	
Finance	Painter	120000	
History	Painter	50000	
Physics	Watson	70000	

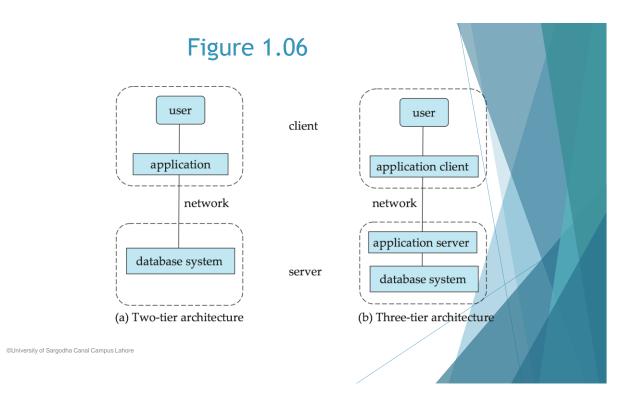

(b) The department table

Figure 1.04

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

©University of Sargodha Canal Campus Lahore

Database Systems