Lecture 8

Database Systems

Instructor: M.Imran Khalil Imrankhalil3@gmail.com Resource:Imrankhalil3.wordpress.com

©University of Sargodha Canal Campus Lahore

Todays lecture

logical design and relational model

Objectives of logical design...

- Translate the conceptual design into a logical database design that can be implemented on a chosen DBMS
 - Input: conceptual model (ERD)
 - Output: relational schema, normalized relations

Resulting database must meet user needs for:

- Data sharing
- Ease of access
- Flexibility

Relational database components

- Data structure
 - Data organized into tables
- Data manipulation
 - > Add, delete, modify, and retrieve using SQL
- Data integrity
 - Maintained using business rules

Why do I need to know this?

- Mapping conceptual models to relational schema is straightforward
- CASE tools can perform many of the steps, but..
 - Often CASE cannot model complexity of data and relationship (e.G., Ternary relationships, supertype/subtypes)
 - There are times when legitimate alternates must be evaluated
 - You must be able to perform a quality check on CASE tool results

Some rules...

- Every table has a unique name.
- > Attributes in tables have unique names.
- Every attribute value is atomic.
 - Multi-valued and composite attributes?
- Every row is unique.
- > The order of the columns is irrelevant.
- > The order of the rows is irrelevant.

The key...

- Relational modeling uses <u>primary keys</u> and <u>foreign keys</u> to maintain relationships
- Primary keys are typically the unique identifier noted on the conceptual model
- Foreign keys are the primary key of another entity to which an entity has a relationship
- Composite keys are primary keys that are made of more than one attribute
 - Weak entities
 - Associative entities

Constraints

- Domain constraints
 - Allowable values for an attribute as defined in the domain
- Entity integrity constraints
 - No primary key attribute may be null
- Operational constraints
 - Business rules
- Referential integrity constraints

Referential integrity constraint

- Maintains consistency among rows of two entities
 - matching of primary and foreign keys
- Enforcement options for deleting records
 - Restrict
 - Cascade
 - Set-to-Null

Transforming the EER diagram into relations

The steps:

- Map regular/strong entities
- Map weak entities
- Map binary relationships
- Map associative entities
- Map unary relationships
- Map ternary relationships
- Map supertype/subtype relationships

Transforming E-R diagrams into relations

Mapping regular entities to relations

- Composite attributes: use only their simple, component attributes
- Multi-valued attributes: become a separate relation with a foreign key taken from the superior entity

CUSTOMER					
Customer_ID	Customer_Name	Street	City	State	Zip

Transforming E-R diagrams into relations

Mapping weak entities

Becomes a separate relation with a foreign key taken from the superior entity

Transforming E-R diagrams into relations

Mapping binary relationships

- One-to-many primary key on the one side becomes a foreign key on the many side
- Many-to-many create a new relation (associative entity) with the primary keys of the two entities as its primary key
 - I like to call intersection entities these to distinguish them from associative entities created at the conceptual level
- One-to-one primary key on the mandatory side becomes a foreign key on the optional side

Example of mapping a 1:M relationship

	CUSTOMER				1		
	Customer_ID	Customer_N	Customer_Name		Customer_Address		
·							
	ORDER						
	Order_ID	Order_Date	Custo	omer_ID			

Example of mapping an M:M relationship

Mapping a binary 1:1 relationship

Looks like this using relational schema notation NURSE Nurse_ID Name Date_of_Birth CARE CENTER Center_Name Location Nurse_in_Charge Date_Assigned

Transforming E-R diagrams into relations

Mapping associative entities

- Identifier not assigned
 - Default primary key for the association relation is the primary keys of the two entities
- Identifier assigned
 - It is natural and familiar to end-users
 - Default identifier may not be unique

Mapping an associative entity with an identifier

Looks like this using relational schema notation

Transforming E-R diagrams into relations

Mapping unary relationships

- One-to-many recursive foreign key in the same relation
- Many-to-many two relations:
 - One for the entity type
 - One for an associative relation in which the primary key has two attributes, both taken from the primary key of the entity

For example...

