
1

Database Systems
Instructor: M.Imran Khalil

Imrankhalil3@gmail.com

Resource:Imrankhalil3.wordpress.com

©University of Sargodha Canal Campus Lahore

Lecture 7

Todays lecture

 Overview of the SQL Query Language

 Data Definition

 Basic Query Structure

 Additional Basic Operations

 Set Operations

 Null Values

 Aggregate Functions

 Nested Subqueries

 Modification of the Database

mailto:Imrankhalil3@gmail.com
Imrankhalil3.wordpress.com

2

History

 IBM Sequel language developed as part of System R project at the IBM

San Jose Research Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

 SQL-86, SQL-89, SQL-92

 SQL:1999, SQL:2003, SQL:2008

 Commercial systems offer most, if not all, SQL-92 features, plus varying

feature sets from later standards and special proprietary features.

Data Definition Language

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 Entity Integrity

 Referential integrity

 Checks

 And as we will see later, also other information such as

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the

specification of information about relations, including:

3

Create Table Construct

 An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))

 insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);

 insert into instructor values (‘10211’, null, ’Biology’, 66000);

Integrity Constraints in Create Table

 not null

 primary key (A1, ..., An)

 foreign key (Am, ..., An) references r

Example: Declare ID as the primary key for instructor

.
create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department)

primary key declaration on an attribute automatically ensures not null

4

And a Few More Relation Definitions
 create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department));

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year),
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

 Note: sec_id can be dropped from primary key above, to ensure a student
cannot be registered for two sections of the same course in the same semester

And more still

 create table course (

course_id varchar(8) primary key,

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

foreign key (dept_name) references department));

 Primary key declaration can be combined with attribute

declaration as shown above

5

Drop and Alter Table Constructs
 drop table student

 Deletes the table and its contents

 delete from student

 Deletes all contents of table, but retains table

 alter table

 alter table r add A D

 where A is the name of the attribute to be added to
relation r and D is the domain of A.

 All tuples in the relation are assigned null as the
value for the new attribute.

 alter table r drop A

where A is the name of an attribute of relation r

 Dropping of attributes not supported by many
databases

Basic Query Structure

 The SQL data-manipulation language (DML) provides the ability to

query information, and insert, delete and update tuples

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ai represents an attribute

 Ri represents a relation

 P is a predicate.

 The result of an SQL query is a relation.

6

The select Clause

 The select clause list the attributes desired in the result of a query

 corresponds to the projection operation of the relational algebra

 Example: find the names of all instructors:

select name

from instructor

 NOTE: SQL names are case insensitive (i.e., you may use upper- or

lower-case letters.)

 E.g. Name ≡ NAME ≡ name

 Some people use upper case wherever we use bold font.

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword

distinct after select.

 Find the names of all departments with instructor, and remove

duplicates

select distinct dept_name

from instructor

 The keyword all specifies that duplicates not be removed.

select all dept_name

from instructor

7

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select *

from instructor

 The select clause can contain arithmetic expressions involving

the operation, +, –, , and /, and operating on constants or

attributes of tuples.

 The query:

select ID, name, salary/12

from instructor

would return a relation that is the same as the instructor

relation, except that the value of the attribute salary is divided

by 12.

The where Clause

 The where clause specifies conditions that the result must

satisfy

 Corresponds to the selection predicate of the relational

algebra.

 To find all instructors in Comp. Sci. dept with salary > 80000

select name

from instructor

where dept_name = ‘Comp. Sci.' and salary > 80000

 Comparison results can be combined using the logical

connectives and, or, and not.

 Comparisons can be applied to results of arithmetic

expressions.

8

The from Clause

 The from clause lists the relations involved in the query

 Corresponds to the Cartesian product operation of the

relational algebra.

 Find the Cartesian product instructor X teaches

select 

from instructor, teaches

 generates every possible instructor – teaches pair, with all

attributes from both relations

 Cartesian product not very useful directly, but useful combined

with where-clause condition (selection operation in relational

algebra)

Cartesian Product: instructor X teaches
instructor teaches

9

Joins
 For all instructors who have taught some course, find their

names and the course ID of the courses they taught.

select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID

 Find the course ID, semester, year and title of each course

offered by the Comp. Sci. department

select section.course_id, semester, year, title

from section, course

where section.course_id = course.course_id and

dept_name = ‘Comp. Sci.'

Try Writing Some Queries in SQL

 Suggest queries to be written…..

10

Natural Join

 join matches tuples with the same values for all common attributes,

and retains only one copy of each common column

 select *

from instructor join teaches on instructor.id=teches.id

Join Example

 List the names of instructors along with the course ID of the courses that

they taught.

 select name, course_id

from instructor, teaches

where instructor.ID = teaches.ID;

 select name, course_id

from instructor join teaches on instructor.ID = teaches.ID;

11

The Rename Operation
 The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 E.g.

 select ID, name, salary/12 as monthly_salary

from instructor

 Find the names of all instructors who have a higher salary than

some instructor in ‘Comp. Sci’.

 select distinct T. name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

 Keyword as is optional and may be omitted

instructor as T ≡ instructor T

 Keyword as must be omitted in Oracle

String Operations

 SQL includes a string-matching operator for comparisons on

character strings. The operator “like” uses patterns that are

described using two special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the

substring “dar”.
select name

from instructor

where name like '%dar%'

 Match the string “100 %”

like ‘100 \%' escape '\'

12

String Operations (Cont.)
 Patters are case sensitive.

 Pattern matching examples:

 ‘Intro%’ matches any string beginning with “Intro”.

 ‘%Comp%’ matches any string containing “Comp” as a substring.

 ‘_ _ _’ matches any string of exactly three characters.

 ‘_ _ _ %’ matches any string of at least three characters.

 SQL supports a variety of string operations such as

 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors

select distinct name

from instructor

order by name

 We may specify desc for descending order or asc for

ascending order, for each attribute; ascending order is the

default.

 Example: order by name desc

 Can sort on multiple attributes

 Example: order by dept_name, name

13

Where Clause Predicates

 SQL includes a between comparison operator

 Example: Find the names of all instructors with salary between

$90,000 and $100,000 (that is,  $90,000 and  $100,000)

 select name

from instructor

where salary between 90000 and 100000

 Tuple comparison

 select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010

 Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)

union

(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)

intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)

except

(select course_id from section where sem = ‘Spring’ and year = 2010)

14

Set Operations

 Set operations union, intersect, and except

 Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the corresponding multiset versions union

all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m, n) times in r intersect all s

 max(0, m – n) times in r except all s

Null Values

 It is possible for tuples to have a null value, denoted by null, for some

of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 The predicate is null can be used to check for null values.

 Example: Find all instructors whose salary is null.

select name

from instructor

where salary is null

15

Aggregate Functions

 These functions operate on the multiset of values of a

column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science

department

 select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the

Spring 2010 semester

 select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010

 Find the number of tuples in the course relation

 select count (*)

from course;

16

Aggregate Functions – Group By

 Find the average salary of instructors in each department

 select dept_name, avg (salary)
from instructor
group by dept_name;

 Note: departments with no instructor will not appear in result

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear

in group by list

 /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

17

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose

average salary is greater than 42000

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups

select dept_name, avg (salary)

from instructor

group by dept_name

having avg (salary) > 42000;

Null Values and Aggregates

 Total all salaries

select sum (salary)

from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes

 What if collection has only null values?

 count returns 0

 all other aggregates return null

18

Nested Subqueries

 SQL provides a mechanism for the nesting of sub queries.

 A sub query is a select-from-where expression that is nested

within another query.

 A common use of sub queries is to perform tests for set

membership, set comparisons, and set cardinality.

Example Query
 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id in (select course_id

from section

where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year= 2010);

19

Example Query

 Find the total number of (distinct) students who have taken

course sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year

from teaches

where teaches.ID= 10101);

Set Comparison

 Find names of instructors with salary greater than that of

some (at least one) instructor in the Biology department.

 Same query using > some clause

select name

from instructor

where salary > some (select salary

from instructor

where dept_name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = ’Biology’;

20

Definition of Some Clause

 F <comp> some r t  r such that (F <comp> t)

Where <comp> can be:     

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5(5  some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5 > some

) = true(5 = some

(= some)  in

However, ( some)  not in

Example Query

 Find the names of all instructors whose salary is greater than

the salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept_name = ’Biology’);

21

Definition of all Clause
 F <comp> all r t  r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5 > all

) = false(5 = all

( all)  not in

However, (= all)  in

Test for Empty Relations

 The exists construct returns the value true if the argument

subquery is nonempty.

 exists r  r  Ø

 not exists r  r = Ø

22

Correlation Variables

 Yet another way of specifying the query “Find all courses taught in

both the Fall 2009 semester and in the Spring 2010 semester”

select course_id

from section as S

where semester = ’Fall’ and year= 2009 and

exists (select *

from section as T

where semester = ’Spring’ and year= 2010

and S.course_id= T.course_id);

 Correlated subquery

 Correlation name or correlation variable

Not Exists

 Find all students who have taken all courses offered in the

Biology department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)

except

(select T.course_id

from takes as T

where S.ID = T.ID));

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

23

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate

tuples in its result.

 (Evaluates to “true” on an empty set)

 Find all courses that were offered at most once in 2009

select T.course_id

from course as T

where unique (select R.course_id

from section as R

where T.course_id= R.course_id

and R.year = 2009);

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

24

Subqueries in the From Clause (Cont.)

 And yet another way to write it: lateral clause

select name, salary, avg_salary

from instructor I1,

lateral (select avg(salary) as avg_salary

from instructor I2

where I2.dept_name= I1.dept_name);

 Lateral clause permits later part of the from clause (after the lateral

keyword) to access correlation variables from the earlier part.

 Note: lateral is part of the SQL standard, but is not supported on many

database systems; some databases such as SQL Server offer alternative syntax

With Clause

 The with clause provides a way of defining a temporary view

whose definition is available only to the query in which the

with clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as

(select max(budget)

from department)

select budget

from department, max_budget

where department.budget = max_budget.value;

25

Complex Queries using With Clause

 With clause is very useful for writing complex queries

 Supported by most database systems, with minor syntax variations

 Find all departments where the total salary is greater than the average of

the total salary at all departments

with dept _total (dept_name, value) as

(select dept_name, sum(salary)

from instructor

group by dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value >= dept_total_avg.value;

Scalar Subquery

 Scalar subquery is one which is used where a single value is expected

 E.g. select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

 E.g. select name

from instructor

where salary * 10 >

(select budget from department

where department.dept_name = instructor.dept_name)

 Runtime error if subquery returns more than one result tuple

26

Modification of the Database

 Deletion of tuples from a given relation

 Insertion of new tuples into a given relation

 Updating values in some tuples in a given relation

Modification of the Database – Deletion

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department

delete from instructor

where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

delete from instructor

where dept_name in (select dept_name

from department

where building = ’Watson’);

27

Deletion (Cont.)

 Delete all instructors whose salary is less than the average

salary of instructors

delete from instructor

where salary< (select avg (salary) from instructor);

 Problem: as we delete tuples from deposit, the average salary

changes

 Solution used in SQL:

1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

Modification of the Database – Insertion

 Add a new tuple to course

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null

insert into student

values (’3003’, ’Green’, ’Finance’, null);

28

Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

 The select from where statement is evaluated fully before any of

its results are inserted into the relation (otherwise queries like

insert into table1 select * from table1

would cause problems, if table1 did not have any primary key

defined.

Modification of the Database – Updates

 Increase salaries of instructors whose salary is over $100,000 by 3%,

and all others receive a 5% raise

 Write two update statements:

update instructor

set salary = salary * 1.03

where salary > 100000;

update instructor

set salary = salary * 1.05

where salary <= 100000;

 The order is important

 Can be done better using the case statement (next slide)

29

Case Statement for Conditional Updates

 Same query as before but with case statement

update instructor

set salary = case

when salary <= 100000 then salary *

1.05

else salary * 1.03

end

Updates with Scalar Subqueries

 Recomputed and update tot_creds value for all students

update student S

set tot_cred = (select sum(credits)

from takes natural join course

where S.ID= takes.ID and

takes.grade <> ’F’ and

takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

case

when sum(credits) is not null then sum(credits)

else 0

end

